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Abstract. In protein-coding DNA sequences, his-
torical patterns of selection can be inferred from
amino acid substitution patterns. High relative rates
of nonsynonymous to synonymous changes (o= dy/
ds) are a clear indicator of positive, or directional,
selection, and several recently developed methods
attempt to distinguish these sites from those under
neutral or purifying selection. One method uses an
empirical Bayesian framework that accounts for
varying selective pressures across sites while condi-
tioning on the parameters of the model of DNA ev-
olution and on the phylogenetic history. We describe
a method that identifies sites under diversifying se-
lection using a fully Bayesian framework. Similar to
earlier work, the method presented here allows the
rate of nonsynonymous to synonymous changes to
vary among sites. The significant difference in using a
fully Bayesian approach lies in our ability to account
for uncertainty in parameters including the tree to-
pology, branch lengths, and the codon model of
DNA substitution. We demonstrate the utility of the
fully Bayesian approach by applying our method to a
data set of the vertebrate ff-globin gene. Compared to
a previous analysis of this data set, the hierarchical
model found most of the same sites to be in the
positive selection class, but with a few striking ex-
ceptions.
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Introduction

Selection at the molecular level can be detected by
comparing the rates of nonsynonymous and synon-
ymous substitutions across protein-coding DNA se-
quences. Equal rates of both types of substitutions
signify neutral evolution, while an overabundance of
synonymous substitutions, which result in few amino
acid changes, indicates purifying selection. An excess
of nonsynonymous substitutions is unequivocal evi-
dence for positive selection; these events are especially
important to identify because they record historical
episodes of adaptive evolution. A few loci where
positive selection has been identified in this manner
are the human major histocompatibility complex
(Hughes and Nei 1988), the HIV-1 envelope gene
(Nielsen and Yang 1998), abalone sperm lysins (Lee
et al. 1995), and primate stomach lysozymes (Messier
and Stewart 1997).

Until recently, models identifying events of posi-
tive selection assumed equal selection pressures on all
amino acids in a sequence. However, functional
constraints can change across a gene, thus rendering
this assumption biologically unreasonable. In fact, in
almost all proteins where positive selection has been
identified only a few sites were found responsible
for the adaptive evolution (Hughes and Nei 1988;
Yokoyama and Yokoyama 1996). Failure to ac-
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commodate varied selection pressures among amino
acid sites may result in overlooking or underesti-
mating positive selection (Nielsen 1997).

Nielsen and Yang (1998) developed a codon-based
model of substitution that incorporated varying se-
lective intensities among amino acid sites. In their
model, the nonsynonymous/synonymous rate ratio
(w=dy/ds) for a site could fall into one of three cat-
egories: w = 0 for purifying selection (all substitu-
tions are synonymous), @ = 1 for neutral evolution
(the synonymous and nonsynonymous rates are
equal), and w > 1 for positive selection (nonsynony-
mous substitutions occur at a higher rate than syn-
onymous substitutions). They also consider a model
in which the nonsynonymous/synonymous rate ratio
across sites is distributed between 0 and 1 using a
truncated gamma distribution. This is the first model
we are aware of that allows the nonsynonymous/
synonymous rate ratio to be chosen from a distribu-
tion and thus to vary across sites. Yang et al. (2000)
considered a large number of alternative models for
allowing constraints to change across the sequence.
Many of these models were quite complex and com-
putationally intensive. However, the ability to identify
positively selected sites was robust to choice of model.

The identification of sites under positive selection
has relied on the empirical Bayes method (Nielsen and
Yang 1998); the probability that each site is in the
positively selected category is calculated conditional
on the information at the tips of the tree. The condi-
tioning is carried out using Bayes’ rule and the free
parameters of the model are fixed at reasonable values
(the maximum likelihood value for each parameter).
Here, the parameters of the model include a tree with
branch lengths and parameters of the substitution
process, such as the transition/transversion rate ratio,
the nonsynonymous/synonymous rate ratio, and the
frequencies of the 61 amino- acid-coding codons. The
empirical Bayes method has a few disadvantages.
Among them are the facts that it does not account for
uncertainty in the model parameters and the priorisa
function of the observations (Berger 1985).

In this paper, we use a fully Bayesian method
rather than an empirical Bayes framework to identify
positively selected sites. In a fully Bayesian analysis,
the parameters of the model are integrated over a
prior distribution, thereby accounting for uncertainty
in the parameters. The high-dimensional summations
and integrations required in a Bayesian analysis are
impossible to perform analytically; we use Markov
chain Monte Carlo (MCMC) to approximate poste-
rior probabilities. Using a fully Bayesian approach
we determine the probability that each amino acid
site is under positive selection (i.e., that it falls into
the positively selected class). We apply the method to
aligned DNA sequences of the f-globin gene from
vertebrates (Yang et al. 2000).

Materials and Methods

Data

We assume that aligned DNA sequences are available for homol-
ogous protein coding genes. The data are contained in the matrix
X={x;}, where i=1,2, ..., sand j=1, 2, ..., ¢; s is the number of
sequences and c¢ is the number of codons in each sequence. The
information at the jth site is contained in the vector x;= (xy;, X2, ...,
Xy)'. As an example, consider the following aligned DNA matrix of
s = 4 sequences:

AAT CGA
AAT CGA
AAC CGC
AAC AGC

AL —

Here, x; = (AAT, AAT, AAC, AAC) and x, = (CGA, CGA,
CGC, AGCY'. There are two sites in the sequence (¢ = 2); at the
first site, there is at least a single synonymous change (all codons
code for asparagine), whereas at the second site there has been at
least one nonsynonymous and one synonymous change (CGA and
CGC code for arginine and AGC codes for serine).

We examine the f-globin sequences from s = 17 vertebrate
species. Each sequence is 432 nucleotide sites in length (or ¢ = 144
codon sites in length). The data were originally collected by Yang et
al. (2000) from the EMBL and GenBank databases. Yang et al.
(2000) found evidence of positive selection at from 2 to 6% of the
144 sites, depending upon the selection model used. Specifically,
they found sites 7, 42, 48, 50, 54, 67, 85, and 123 to be under
diversifying selection.

Model

We assume that substitutions occur according to a time-homoge-
neous Markov process. The instantaneous rate matrix of this
process, Q, is given by

WKT;:  nonsynonymous transition
wn;: nonsynonymous transversion
Q = {g;} = { xm;: synonymous transition
i synonymous transversion
0: iand j differ at more than one position

where  is the nonsynonymous/synonymous rate ratio, x is the
transition/transversion rate ratio, and 7; is the stationary frequency
of codon j (Goldman and Yang 1994; Muse and Gaut 1994). This
matrix specifies the rate of change from codon i to codon j. The
stationary codon frequencies are constrained to sum to one and are
contained in the vector 7 [r= (7444, Tyuc> TauG» ---» Tuvw)l- The
diagonal of the rate matrix Q is specified such that the row sums
equal zero. Moreover, we rescale the matrix such that = m;q;;=1;
this means that the branch lengths are in terms of expected number
of substitutions per codon site, v. The rate matrix is 61 x 61 because
the three stop codons are excluded. Also, note that the rate matrix
is time reversible, as m,q;;=m,q;; for all i and j. Practically speaking,
this means that the phylogenetic tree can be arbitrarily rooted
without changing the likelihood. The transition probabilities are
calculated as P(v)={p;(v, o, x, m)} =¢?". This is the same model
proposed by Nielsen and Yang (1998) and is simply a more pa-
rameter-rich version of the original model proposed by Goldman
and Yang (1994) and Muse and Gaut (1994).

Like Nielsen and Yang (1998), we assume that the nonsynon-
ymous/synonymous rate ratio (w) is a random variable. Specifi-
cally, we assume the “M3” model of Yang et al. (2000): With
probability p;, w is equal to w,, with probability p, w is equal to w,,
and with probability p;=1-p;—p, o takes the value w;.We con-



strain m; < w, < ;. Categories with @ >1 model sites under pos-
itive selection.

We assume that the sequences are related by a bifurcating phy-
logenetic tree, t. Trees are labeled 1, 2, ..., B(s), where B(s) = (2s—5)!/
273(s=3)! is the number of possible unrooted trees for s species. The
tips of this tree are labeled ny, n,, ..., ny and the interior nodes of the
tree are labeled g4 1, ..., ny,_5 in a postorder traversal of the tree
(i.e., from the tips of the tree to the root). The tree is rooted at tip
node n,. The length of the ith branch is denoted v; and is in terms of
expected number of substitutions per codon. The branch lengths are
contained in the vector v=(vy, ..., v25_»). The ancestor of node k on
the tree is denoted (k). The ancestor of node n,,_5 is 6(25s—-2) =s and
the ancestor of node 7 is o(s) = 0. The probability of observing the
data at the ith codon position (x;) is a sum over all possible codon
assignments to the interior nodes of the phylogenetic tree. Let
y={yk} for k=s+1, ..., 2s—1 be a generic data vector for the in-
terior nodes of the phylogenetic tree. The probability of observing
the data at the ith codon site given the tree, substitution parameters,
and the selection category (K; = 1, 2 or 3) is then

s—1
S, Vo6 m 0K, K) = > <prﬁ<,\)x/\ (vk, @i, 1, 71))
y k=1
25—2
H Pyo v (v/\'! WK, K, T()

k=s+1

Felsenstein (1981) described a pruning algorithm for efficiently

performing the summation over ancestral assignments of codons.
Assuming independence of the substitutions among codons, the

probability of observing the full sequence data set, X, is

¢ 3
f(X|‘C,V,K, nvwlvastPlypl) = H (Z.f(xih—:v; Kvn)meKi)pKi)

i=1 \Ki=1

Bayesian Analysis

In a Bayesian analysis, parameter estimates are based upon the
posterior probability distribution of the parameter. For example,
consider a statistical model involving two parameters, called 0, and
0 . The joint posterior probability of the parameters is f(0,, 0, X),
and is the joint probability of the parameters conditioned on the
observations, X. If one were only interested in the first parameter,
0, then the standard approach is to base inferences on the mar-
ginal posterior probability distribution of the first parameter,
f(0,/X). The marginal probability distribution of 6 is calculated by
integrating over all possible values for 0,:

(XIO)'( D)

S6il%) = Jo, SCX100)1(01 )0,

where
IXI0) = /0 X100, 02)/(02)d0,

(f(X16,) is a marginal likelihood with respect to 6,). Note that the
likelihood, f(X160,), is obtained by integrating over all possible
values for 0,, weighting each possible value by its prior probability
density. In an empirical Bayes analysis, on the other hand, an es-
timate is substituted for 6,, and the marginal distribution of 6, is
calculated conditional on 6, taking some value:

S(X101,0,)f(01,0)

S01]X,0,) = _
Jo /1 (X101, 02)/(01,02)d0,

The likelihood is calculated conditional on the parameter 6, taking
a specific value (in this case, the maximum likelihood estimate of
0, 01).
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In this study, we pursue a fully Bayesian approach and integrate
over uncertainty in the model parameters, such as the tree topol-
ogy, branch lengths, and substitution parameters. Specifically, all
unrooted trees are considered a priori equally probable; branch
lengths are assumed to be exponentially distributed with parameter
10, the category probabilities are drawn from a flat Dirichlet dis-
tribution, and the stationary codon frequencies are drawn from a
flat Dirichlet distribution. The prior probability distribution on the
transition/transversion rate ratio and on the nonsynonymous/syn-
onymous rate ratios required more consideration. We took the
approach advocated by Zwickl and Holder (2003), considering the
prior on these ratio parameters to be the ratio of two random
variables. Specifically, we assumed that the transition and trans-
version rates are random variables drawn from the same expo-
nential distribution. The prior probability distribution on the
transition transversion rate ratio [ f(x)], then, is the ratio of two
exponentially distributed random variables:

1

S) :m

(the specific value for the parameter of the common exponential
distribution for the transition and transversion rates does not mat-
ter). The prior probability distribution for the three nonsynony-
mous/synonymous rate ratios is calculated in a similar manner. Here,
we have three nonsynonymous rates (dyi, dy», dy3) and one synon-
ymous rate of substitution (ds). The three nonsynonymous rates are
all scaled to the synonymous rate, such that w, = dy,/ds, w, = dy»/ds,
and w3 =dy3/ds. Again, we assume that the four rates are all inde-
pendent and ordered draws from the same exponential distribution.
The joint prior probability distribution for the three w’s is then

36

f(wlyw2¢w3) i ——Y
(14w +w +w3)4

(There is an extra factor of 3! = 6 in the numerator because there
are six different ways that one could observe ’s in the three in-
finitesimal intervals.)

The main criticism of Bayesian approaches concerns the spec-
ification of prior probability distributions on parameters of a
model. We used the priors, discussed above, because they are either
fiat over reasonable biological values for the parameters or only
weakly informative. Some of the priors were weakly informative.
For example, we use an exponential (10) prior distribution on
branch lengths. We think that an exponential prior that places
more weight on smaller values for the branch lengths is reasonable;
the very fact that we have been able to align the sequences in the
first place can be taken as evidence that the branch lengths are not
so long that the sequences are saturated. Moreover, in practice the
exponential prior on branch lengths can be easily overcome by the
data if, in fact, a branch is long. Similarly, the priors on the
transition/transversion rate ratio and the nonsynonymous/synon-
ymous rate ratios were weakly informative. Importantly, for the
ratio parameters a prior that is the ratio of two random variables
does not bias the results toward large (or small) values for the
parameters (Zwickl and Holder 2003). A uniform or flat prior was
used for the other parameters of the model. For example, the codon
frequencies and selection category frequencies both had flat Di-
richlet priors. In both cases, there does not seem to be any reason
to prefer one combination of frequencies over another, so we give
all combinations of frequencies equal prior probability. Finally, we
use a flat prior on phylogeny. Although it is true that a lot is known
about the phylogeny of many groups before hand (from taxono-
mies, for example), this information is currently difficult to incor-
porate into a Bayesian framework. A flat prior on topology seems a
safe approach to take until a scheme that allows different prior
probabilities to be placed on trees is worked out; a flat prior does
not bias the results toward any specific tree.

We are specifically interested in the probability that a
given codon site is in the positive selection category. The proba-
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bility that the ith codon site is in the positively selected class,
K; = 3,is

f(X\K[ = 3)[73
SR =3X) = 5= —
( Y S AXIK; = j)p;

and f{X|K;=)) is obtained by summing over all possible trees and
integrating over all possible combinations of branch lengths,
transition/transversion rate biases, codon frequencies, and non-
synonymous/synonymous rate ratios for the purifying and posi-
tively selected classes. Hence, we place second-stage priors on
parameters such as the tree topology, branch lengths, and substi-
tution parameters. In contrast, in the empirical Bayes analysis of
Nielsen and Yang (1998), the probability of a site being in the
positive selection category is conditioned on the tree, branch
lengths, and parameters of the substitution model taking specific
values. Berger (1985) pointed out several advantages of a hierar-
chical approach, with perhaps the most important being that errors
in the hyperparameters are included in the posterior distribution of
interest automatically. (The hyperparameters are the parameters of
the prior distribution.)

Markov Chain Monte Carlo

The summations and integrals required to calculate the posterior
probability of a site being under diversifying selection are im-
possible to evaluate analytically. We approximate the posterior
probability using Markov chain Monte Carlo (MCMC). Specifi-
cally, we use the Metropolis—Hastings algorithm (MH; Metropolis
et al. 1953; Hastings 1970) to perform the numerical integration.
Assume that the desired posterior probability distribution is
fO1X)=f(X10) f(0)/f(X). The probability of observing the data,
A(X), is an integral over all possible values for 0 and is typically
difficult or impossible to calculate analytically. The MH algorithm
constructs a Markov chain with the state space being the pa-
rameter of interest (0, in this case) and a stationary distribution
which is the posterior probability distribution of the parameter.
The samples drawn from this chain when at stationarity are valid
(albeit dependent) draws from the posterior distribution of in-
terest. In fact, the Markov chain law of large numbers states that
the posterior probability distribution can be validly estimated
from the long-run sample frequencies (Tierney 1994). The
Markov chain is constructed as follows: (1) Initialize the chain
with a value for the parameter 6. The initial value for # might be
drawn from the prior probability distribution for 6. The current
state of the chain is denoted 0. (2) Propose a new value for the
parameter, denoted 6. The probability of proposing the new state
given the current state is f(0’|0). The probability of the reverse
move, which is not actually made, is also calculated. (3) Calculate
the acceptance probability, R, for the new state where

e el

’= m{l 70%) X.f(ﬁ’lﬁ)}

T XX A0l
‘mm{l’ TIXI0A0) 1) X.f(B’\B)}
T ) A9 e
= {" 70X10) * 700) Xf(f?’\@)}

The acceptance probability is simply the product of three ratios
that can be readily calculated: the likelihood ratio times the prior
ratio times the proposal ratio (also called the “Hastings’ factor”).
Note that the factor that was difficult to calculate in the first place,
f(X), cancels. (4) Draw a uniformly distributed random variable on
the interval [0,1]. If this number is less than R, then the proposed
state is accepted and 0= 0. If this random number is greater than
R, then the proposed state is rejected, and the chain remains in its
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Fig. 1. Plots showing the log likelihood of the current state over
the course of the MCMC analysis. The chain was started at a
random tree and set of branch lengths; the initial state had a poor
likelihood. As the chain is run, it quickly found parameters that
best explain the data, and a plateau in the log likelihood is reached.
A The log likelihoods for all states visited over the course of the
analysis. B The log likelihoods for states visited when the chain was
at apparent stationarity.

0 400000 1200000

current state. (5) Return to step 2. This procedure is repeated a
large number of times. The sequence of states visited forms a
Markov chain. The fraction of the time the chain visits any par-
ticular value for the parameter is a valid approximation of the
posterior probability distribution.

We construct a Markov chain that has as its state space phy-
logenetic trees (), branch lengths (v), transition/transversion rate
ratios (kx), codon frequencies (), probability of a site being in the
first, second, and third selection classes (respectively, py, p2, and p3),
and o values for the first, second, and third selection classes (wy,
@y, and ;). The chain is constructed by randomly choosing a
parameter to change (say the transition/transversion rate bias),
proposing a new state for the parameter, and deciding whether the
new state is accepted or rejected. The Appendix describes the
proposal mechanisms used in this study.

Results

The program MrBayes v3.0 (Huelsenbeck and Ron-
quist 2001; Ronquist and Huelsenbeck 2003; http://
morphbank.ebc.uu.se/mrbayes3/) implements the
method described in this paper in a user-friendly
program. The specific commands for setting up the
model were ‘Iset nucmodel=codon nst=2 omega-
var=m3’. Two independent chains were run, each of
which started from different randomly chosen trees.
Each chain was run for 1.2 million update cycles, and
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elephant seal
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1.00
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marsupial

1.00 duck Fig. 2. A majority rule consensus tree

summarizing uncertainty in the phylogeny of
L— chicken the s = 17 vertebrates. The majority rule
consensus tree was based on the trees
. sampled after the burn-in period (the burn-in
X. laevis of the chain was all samples taken before
1.00 cycle 200,000). The numbers at the interior
X t .. nodes of the tree are interpreted as the
- tropicis posterior probability that the particular

0.05 changes

the states of the chain were sampled every 100th cy-
cle. Inferences were based on samples taken in the last
one million cycles; samples taken during the first
200,000 cycles were discarded as the “burn-in”’ of the
Markov chain. All of the results from this paper are
based on the combined samples taken from the two
chains. Figure 1 shows the log probability of ob-
serving the data for each sampled state through time
for all four chains. Note that the chains started with
combinations of parameter values that poorly ex-
plained the data but quickly improved in likelihood,
eventually reaching a plateau. The plateau was
reached relatively quickly. Also, note that there was
no discernible difference in the log likelihoods for the
two chains. Moreover, inspection of the posterior
probability distributions of individual parameters
based on each chain overlap. Together, these obser-
vations suggest that the MCMC algorithm is suc-
cessfully sampling from the posterior probability
distribution of the parameters.

clade is correct.

There was a large degree of uncertainty in some of
the parameters of the evolutionary model used in this
study. For example, although there was strong sup-
port for some relationships (e.g., that rat and mouse
are each others closest relatives), the posterior prob-
abilities of some of the other clades was quite low
(Fig. 2). Similarly, there was uncertainty in the pa-
rameters of the substitution model (Fig. 3). Table 1
summarizes the mean and 95% credible interval for
each of the parameters of the substitution model used
in this analysis whereas Figure 3 shows the full
marginal posterior probability density distributions
for a number of the substitution parameters.

The probability that each site was under diversi-
fying selection was calculated each time the chain was
sampled. Figure 4A shows the average probability
that each site was under positive selection. The mean
and 95% credible interval of the probability for each
site being under positive selection is also summarized
in Table 2 (also see Fig. 6). The highest mean pos-
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Fig. 3. The marginal posterior probability densities of several
parameters of the substitution model. The parameters include p,
P2, and p3 (the prior probabilities of being in the purifying, neutral,
and positively selected categories, respectively), k (the transition/
transversion rate bias), and w;, w,, and w3 (the nonsynonymous/
synonymous rate ratios for categories 1, 2, and 3, respectively).

terior probability was 0.934 for codon 67. Other sites
that had among the highest posterior probabilities of
being under diversifying selection were 67 (0.934), 50
(0.909), 48 (0.871), 7 (0.757), 74 (0.714), 85 (0.691),
123 (0.676), 110 (0.640), 54 (0.640), 11 (0.637), and 42
(0.632). Many of these are the same sites identified by
Yang et al. (2000) as being under positive selection;
however, the posterior probabilities for many of the
sites in their study were higher.

There was a large degree of variability in the
posterior probabilities that sites were under positive
selection. Figure 5 shows frequency histograms of the
posterior probabilities that sites are under positive
selection for the states visited by the Markov chains.
Note that even for sites for which there is strong

Table 1.

Parameter estimates for the vertebrate f-globin gene

Parameter

Mean (95% CI)

TL
K
(O3]
(0))

T

T

3

Ta44
Tq4C
T44G
Ta4aT
Taca
Tacc
TacG
TacT
TAGA
TaGC
TAGG
TAGT
TATA
TaTC
TATG
TaTT
TcAA
Tcac
TcAG
Tcar
Tcca
Weleel
lrelee]
Tcer
TcGa
Welclel
lrelele]
Welchy
TcTA
Tcre
ncrG
Terr
TGAA
TGgac
TGAG
TGAT
TGcA
Welelel
lielele]
nGer
TGGA
nGGe
GGG
TGGT
TGTA
nGre
nGTG
nGrT
TraC
TraT
Trca
Trcce
TrcG
Trer
TrGe
L yele

2.8053 (2.4320, 3.2800)
1.5896 (1.2971, 1.9208)
0.1542 (0.1223, 0.1914)
1.0898 (0.7319, 1.5779)
1.7194 (1.0147, 3.2997)
0.8928 (0.8330, 0.9430)
0.0725 (0.0265, 0.1297)
0.0347 (0.0047, 0.0804)
0.0158 (0.0099, 0.0220)
0.0265 (0.0174, 0.0362)
0.0447 (0.0311, 0.0591)
0.0332 (0.0246, 0.0447)
0.0039 (0.0006, 0.0104)
0.0159 (0.0081, 0.0254)
0.0036 (0.0005, 0.0076)
0.0262 (0.0157, 0.0383)
0.0032 (0.0007, 0.0083)
0.0221 (0.0140, 0.0321)
0.0069 (0.0021, 0.0136)
0.0223 (0.0127, 0.0347)
0.0057 (0.0011, 0.0126)
0.0292 (0.0184, 0.0411)
0.0103 (0.0045, 0.0178)
0.0194 (0.0107, 0.0312)
0.0088 (0.0034, 0.0171)
0.0233 (0.0120, 0.0356)
0.0216 (0.0128, 0.0338)
0.0284 (0.0190, 0.0392)
0.0066 (0.0016, 0.0165)
0.0150 (0.0075, 0.0239)
0.0044 (0.0009, 0.0104)
0.0200 (0.0107, 0.0320)
0.0040 (0.0001, 0.0141)
0.0124 (0.0057, 0.0214)
0.0023 (0.0002, 0.0064)
0.0057 (0.0011, 0.0134)
0.0034 (0.0012, 0.0067)
0.0160 (0.0103, 0.0217)
0.0450 (0.0307, 0.0626)
0.0081 (0.0046, 0.0127)
0.0176 (0.0108, 0.0254)
0.0206 (0.0128, 0.0314)
0.0183 (0.0106, 0.0289)
0.0285 (0.0186, 0.0409)
0.0074 (0.0034, 0.0123)
0.0413 (0.0321, 0.0528)
0.0056 (0.0023, 0.0098)
0.0401 (0.0297, 0.0523)
0.0108 (0.0051, 0.0177)
0.0237 (0.0137, 0.0344)
0.0057 (0.0023, 0.0104)
0.0142 (0.0087, 0.0206)
0.0027 (0.0009, 0.0060)
0.0153 (0.0097, 0.0216)
0.0214 (0.0137, 0.0317)
0.0188 (0.0127, 0.0249)
0.0112 (0.0049, 0.0203)
0.0106 (0.0037, 0.0187)
0.0085 (0.0024, 0.0169)
0.0241 (0.0134, 0.0364)
0.0013 (0.0001, 0.0048)
0.0316 (0.0208, 0.0445)
0.0098 (0.0040, 0.0200)
0.0192 (0.0066, 0.0355)

(Continued)
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Table 1. Continued Table 2. Posterior probabilities of positive selection

Parameter Mean (95% CI) Site Mean (95% CI), median
Tr6T 0.0199 (0.0087, 0.0327) 1 0.000 (0.000, 0.000) 0.000
TrTA 0.0040 (0.0006, 0.0099) 2 0.000 (0.000, 0.000) 0.000
Trre 0.0229 (0.0147, 0.0338) 3 0.001 (0.000, 0.010) 0.000
TG 0.0092 (0.0053, 0.0145) 4 0.000 (0.000, 0.000) 0.000
TrrT 0.0221 (0.0141, 0.0346) 5 0.000 (0.000, 0.000) 0.000
6 0.000 (0.000, 0.000) 0.000
Note. TL, the sum of the branch lengths on the tree (the tree 7 0.757 (0.018, 0.997) 0.897
length). 8 0.493 (0.000, 0.964) 0.656
9 0.000 (0.000, 0.000) 0.000

10 0.002 (0.000, 0.008) 0.001
A —. 1.oo 11 0.637 (0.001, 0.996) 0.936
5_4 0.754 12 0.000 (0.000, 0.000) 0.000
"‘I'? 0.50 13 0.000 (0.000, 0.000) 0.000
w 0.25- 14 0.024 (0.000, 0.125) 0.010
h 0.004 15 0.000 (0.000, 0.000) 0.000
S'te 16 0.000 (0.000, 0.000) 0.000
17 0.067 (0.000, 0.365) 0.022
B _ 1.oo 18 0.000 (0.000, 0.000) 0.000
E 0.754 19 0.000 (0.000, 0.000) 0.000
1 0.504 20 0.295 (0.000, 0.843) 0.245
& 0.25- 21 0.000 (0.000, 0.000) 0.000
0,004 | I N Y 2 0.000 (0.000, 0.000) 0.000
Site 23 0.000 (0.000, 0.000) 0.000
24 0.000 (0.000, 0.000) 0.000
C _ 100 25 0.000 (0.000, 0.000) 0.000
f 0.75- 26 0.000 (0.000, 0.000) 0.000
f'l? 0.50 27 0.000 (0.000, 0.001) 0.000
s 0.254 28 0.000 (0.000, 0.000) 0.000
= 0.00- M I S 29 0.000 (0.000, 0.000) 0.000
Site 30 0.000 (0.000, 0.000) 0.000
31 0.000 (0.000, 0.000) 0.000
Fig. 4. A The posterior probability of each site being in the pos- 32 0.000 (0.000, 0.000) 0.000
itively selected class. B The median of the posterior probabilities of 33 0.000 (0.000, 0.000) 0.000
each site being in the positively selected class. C The posterior 34 0.000 (0.000, 0.000) 0.000
probability of being in the positively selected class when maximum 35 0.000 (0.000, 0.000) 0.000
likelihood is used to estimate parameters. 36 0.000 (0.000, 0.000) 0.000
37 0.000 (0.000, 0.000) 0.000
. . [ . . 38 0.000 (0.000, 0.000) 0.000
evidence of dlver51fy1ng selectlgr'l,.such as gltes 7, 11, 39 0.000 (0,000, 0.000) 0.000
and 48, the posterior probabilities of being under 40 0.000 (0.000, 0.000) 0.000
positive selection varied substantially. In fact, for 41 0.002 (0.000, 0.012) 0.001
some sites the posterior probability of being under 42 0.632 (0.000, 1.000) 0.997
positive selection varied over the entire range of the 43 0.000 (0.000, 0.000) 0.000
. . 44 0.000 (0.000, 0.000) 0.000
parameter during the course of the chain. For ex- 45 0.000 (0,000, 0.000) 0.000
ample, for site 74 the average posterior probability 46 0.000 (0.000: 0.000) 0.000
was 0.714, which suggests that the site may have been 47 0.000 (0.000, 0.000) 0.000
under positive selection. However, the chain consid- 48 0.871 (0.275, 0.993) 0.929
ered reasonable combinations of parameters that 49 0.002 (0.000, 0.010) 0.001
. .. . . 50 0.909 (0.189, 1.000) 1.000
made the posterior probability for this site range 51 0,000 (0.000. 0.000) 0.000
from 0.00034 to 099969, with the chain spending 52 0.000 (0.000: 0.000) 0.000
95% of the time in the interval ranging from 0.006 to 53 0.000 (0.000, 0.000) 0.000
0.993 (the 95% credible interval). 54 0.640 (0.001, 0.999) 0.965
55 0.000 (0.000, 0.000) 0.000
56 0.000 (0.000, 0.000) 0.000
Discussion 57 0.000 (0.000, 0.000) 0.000
58 0.000 (0.000, 0.000) 0.000
Earlier studies suggest that the ability to identify 2(9) 8:888 Egggg g:ggg; 8:888
positively selected sites may be relatively insensitive 61 0.000 (0.000, 0.000) 0.000
to the choice of phylogeny. For example, Yang et al. 62 0.000 (0.000, 0.000) 0.000
(2000) found that inferences of positive selection were 63 0.000 (0.000, 0.000) 0.000
64 0.000 (0.000, 0.001) 0.000

fairly robust to which of six trees were used for the

(Continued)
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Table 2. Continued

Table 2. Continued

Site Mean (95% CI), median Site Mean (95% CI), median
65 0.000 (0.000, 0.000) 0.000 129 0.000 (0.000, 0.000) 0.000
66 0.000 (0.000, 0.002) 0.000 130 0.000 (0.000, 0.001) 0.000
67 0.934 (0.346, 1.000) 0.999 131 0.000 (0.000, 0.000) 0.000
68 0.000 (0.000, 0.002) 0.000 132 0.000 (0.000, 0.000) 0.000
69 0.000 (0.000, 0.000) 0.000 133 0.000 (0.000, 0.000) 0.000
70 0.000 (0.000, 0.000) 0.000 134 0.000 (0.000, 0.000) 0.000
71 0.001 (0.000, 0.007) 0.000 135 0.000 (0.000, 0.000) 0.000
72 0.000 (0.000, 0.000) 0.000 136 0.000 (0.000, 0.000) 0.000
73 0.000 (0.000, 0.000) 0.000 137 0.013 (0.000, 0.106) 0.002
74 0.714 (0.006, 0.993) 0.830 138 0.000 (0.000, 0.000) 0.000
75 0.000 (0.000, 0.002) 0.000 139 0.000 (0.000, 0.000) 0.000
76 0.000 (0.000, 0.000) 0.000 140 0.000 (0.000, 0.001) 0.000
71 0.000 (0.000, 0.000) 0.000 141 0.000 (0.000, 0.000) 0.000
78 0.000 (0.000, 0.000) 0.000 142 0.000 (0.000, 0.000) 0.000
79 0.000 (0.000, 0.000) 0.000 143 0.000 (0.000, 0.000) 0.000
80 0.000 (0.000, 0.000) 0.000 144 0.000 (0.000, 0.001) 0.000
81 0.002 (0.000, 0.009) 0.000

82 0.000 (0.000, 0.000) 0.000

83 0.000 (0.000, 0.000) 0.000

84 0.311 (0.000, 0.866) 0.270 p-globin gene data. This is an encouraging result
85 0.691 (0.003, 1.000) 1.000 because it suggests that estimates of positive selection
Sg 3'888 Eg'ggg’ 8‘888; 8'838 may be relatively insensitive to a major source of
28 0.000 (01000: 0:000) 0.000 uncertainty in phylogenetic studies. Hovyeveli, .the
39 0.000 (0.000, 0.000) 0.000 codon models typically used to detect diversifying
90 0.000 (0.000, 0.000) 0.000 selection are parameter rich, containing many free
91 0.000 (0.000, 0.000) 0.000 parameters besides the topology and branch lengths
gg g:ggg 8:883’ 8:888; 8:888 of the phylogeny; the model we used, for example,
04 0.000 (0.000’ 0.000) 0.000 contained a total of 66 free parameters, excluding the
95 0.000 (0.000, 0.000) 0.000 tree and branch length parameters (k, w1, ), @3, p1,
96 0.000 (0.000, 0.000) 0.000 P>, and 7). Uncertainty in any of these parameters
97 0.000 (0.000, 0.000) 0.000 can contribute to uncertainty in inferences of diver-
gg 8'888 Eg'ggg’ 8‘388; 8'888 sifying selection. Some of the parameters are expected
100 0.000 (01000’ 0:000) 0.000 to play an especially important role; the site category
101 0.000 (0.000, 0.000) 0.000 probabilities (here, p;, p,, and p3) should strongly
102 0.000 (0.000, 0.000) 0.000 affect the posterior probability of being in the posi-
103 0.000 (0.000, 0.000) 0.000 tively selected class because Bayes’s rule directly uses
}82 82888 Eg:ggg’ 8:388; 82888 these quantities. The estimates of these parameters
106 0.000 (0.()0(): 0.000) 0.000 had some degree of associated uncertainty; the cred-
107 0.000 (0.000, 0.000) 0.000 ible intervals for p;, p,, and p3 were (0.733, 0.943),
108 0.000 (0.000, 0.000) 0.000 (0.026, 0.129), and (0.005, 0.080), respectively. The
109 0.001 (0.000, 0.008) 0.000 greatest source of uncertainty in this particular study,
H(l) g'ggg Eg'ggg’ 8‘(9)(9)(5)3 g'ggg however, can be attributed to the dN/dS parameters
12 0.000 (0:000’ 0:()00) 0.000 for each category. In particular, sometimes the
113 0.136 (0.000, 0.526) 0.084 Markov chain had all three parameters less than 1
114 0.024 (0.000, 0.157) 0.004 (w1, s, w3 < 1), which means that the probability of
115 0.004 (0.000, 0.025) 0.001 any site being in positive selection for those samples
Hg g'ggg Eg'ggg’ g‘gggg 8‘888 was zero. Figure 5 shows this phenomenon; note that
118 0.243 (0:000’ 0:802) 0.182 there is a spike of probability density on zero for the
119 0.006 (0.000, 0.050) 0.001 nine sites depicted in the figure. The mean posterior
120 0.000 (0.000, 0.000) 0.000 probability of finding a site in the positive selection
121 0.000 (0.000, 0.000) 0.000 category is decreased when all three selection classes
};i 8'2(7)(6) Eg'ggg’ ?‘gggg ?’888 have w < 1. One possible solution is to summarize
124 0.000 (0:000’ 0:001) 0.000 the results of the MCMC analysis using the median
125 0.000 (0.000, 0.000) 0.000 posterior probabilities, as shown in Fig. 4B. Gener-
126 0.000 (0.000, 0.000) 0.000 ally speaking, taking the median of the posterior
127 0.000 (0.000, 0.000) 0.000 probabilities of finding sites in the positive selection
128 0.000 (0.000, 0.000) 0.000

(Continued)

class makes the results more in line with the proba-
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bilities obtained using the empirical Bayes approach
(Fig. 40C).

We found a number of sites with posterior prob-
abilities greater than 0.70 of being under positive
selection. Specifically, sites 7, 48, 50, 67, and 74 had
high mean posterior probabilities. If the median
posterior probability sampled by the MCMC algo-
rithm is used instead, we identify four sites with
posterior probabilities greater than 0.99 (42, 67, 85,
and 123) and an additional three sites with posterior
probabilities greater than 0.90 (11, 48, 54). We iden-
tified many of the same sites as being under diversi-
fying selection as Yang et al. (2000). This is not
unexpected, as the modeling assumptions used in
both studies were nearly the same, with the main
difference being the treatment of the nuisance pa-
rameters of the model.

The posterior probability of being in the positive
selection category was typically lower for sites that
were identified as being under diversifying selection in
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Fig. 5. The variation in the
probability that several
different sites were in the
positively selected class.
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this study than analysis of the same gene suggested in
an empirical Bayes analysis (using a program written
by JPH that implements the M3 model and estimates
parameters using maximum likelihood). Figure 8
shows the relationship between the posterior proba-
bilities of being in the positive selection class for all
144 amino acid positions. A number of the sites had
posterior probabilities near one using the empirical
Bayes method; these same sites had a lower posterior
probability of being under positive selection using the
fully Bayesian method. The likely explanation con-
cerns the use of averaging probabilities over MCMC
samples versus taking the maximum likelihood esti-
mate. In this study, we averaged the posterior prob-
ability of a site being under positive selection over all
of the reasonable parameter values sampled by the
Markov chain. Figure 5 shows the frequency histo-
gram of the posterior probabilities for nine sites. For
sites that are likely under diversifying selection, such
as site 50, the distribution is strongly left-skewed;
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selected class when the sites are ordered from highest to lowest
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The dashed lines show the 95% credible interval for each site being
in the positive selection category.
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Fig. 7. The mean and 95% credible interval of the frequency for
each of the 61 codons. The mean is denoted by the circle and the
interval by the horizontal bar. The codon frequencies predicted by
the frequencies of the nucleotides at the three codon positions are
shown as the X. Note that in about half of the cases, the predicted
frequencies are well outside of the 95% credible interval.

most of the states sampled by the Markov chain re-
sulted in a high posterior probability of being in the
positively selected class. The results for site 50 are
similar for both the empirical and the fully Bayes
approaches. However, the same is not true for site 48,
where there is more uncertainty about the assignment
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Fig. 8. The relationship between the posterior probability of a site
being in the positive selection class as determined using the fully
Bayesian method (Bayes PP) and the empirical Bayes method
(Empirical Bayes PP).

of the site to the positive selection class. The Markov
chain considered states that made the posterior
probability of being under positive selection vary
from zero to near one. In this case, taking the mean
of the posterior probabilities over MCMC samples
causes the probability of being in the positive selec-
tion class to be substantially lower under the fully
Bayesian method as opposed to the empirical Bayes
method (0.871 vs. 0.998).

It is difficult to assess the computational merits of
the approach taken here. The analyses described in
this paper took about a day on a fast desktop com-
puter, whereas the same analysis using the empirical
Bayes approach would take about an hour. Although
the analysis took longer, we did obtain considerable
information on the parameters (specifically, the joint
and marginal posterior probability densities of the
parameters) and were able to explicitly incorporate
uncertainty in the parameter estimates when search-
ing for positively selected sites. Moreover, the sub-
stitution model used in this analysis was more
parameter rich than most codon models used to
identify positive selection in that the codon frequen-
cies were all allowed to vary freely (they were as-
signed a flat Dirichlet prior). Typically, in maximum
likelihood approaches to the problem, the codon
frequencies are calculated as a function of the fre-
quencies of the four nucleotides A, C, G, and T at the
first, second, and third codon positions (£{* is the
frequency of nucleotide 7 at codon position k). Hence,
the frequency of codon ACT is calculated as (f," x
Fc® x f#3)/x (x is a constant that takes into account
the fact that only 61 of the 64 codons are used). This
means that in the implementation of the codon model
described here, there was more freedom for the model
to explain the data by modifying substitution rates
using the codon frequencies. Figure 7 illustrates how
well a model that estimates codon frequencies using
four nucleotide parameters explains the codon fre-



quencies visited in the course of the MCMC analysis.
Specifically, Fig. 7 shows the mean and 95% credible
interval for each of the 61 codon frequencies. The
codon frequencies predicted by the product of the
nucleotide frequencies at the three codon positions
are shown as the X. In 31 of the 61 cases, the codon
frequencies predicted using the nucleotide frequencies
are outside of the 95% credible interval.

Many questions in evolutionary biology require
the effective and efficient identification of the signa-
ture of natural selection at the molecular level. As
computational limits become less cumbersome, bio-
logically realistic models that attempt to do this are
becoming more feasible. The codon models of
Goldman and Yang (1994) and Muse and Gaut
(1994) represent a significant advance in the field, as
they allowed the exact partitioning of substitutions
into those that change and those that do not change
the protein sequence. The work of Nielsen and Yang
(1998) also represents a significant advance because it
allowed constraints to change across the sequence as
well as the identification of sites under diversifying
selection. A major advantage of the fully Bayesian
approach described here is that it takes advantage of
the earlier advances in codon models and accommo-
dates uncertainty in parameters that in an empirical
Bayes analysis must be hard-wired point estimates.
This benefit may outweigh the associated computa-
tional costs.
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Appendix

Changing the Tree Topology and Branch Lengths

With probability 1/; a move is attempted that simul-
taneously changes the tree topology, 7, and branch
lengths, v. We used a proposal mechanism first de-
scribed by Larget and Simon (1999). One of the s—3
internal branches of the unrooted tree was chosen at
random. This branch will be the middle branch of a
set of three contiguous branches that form the
“backbone” of the move and is denoted e. There are
two branches that are incident to either end of this
branch. The branches incident to one end of the
branch are randomly labeled a and b, whereas the
branches incident to the other end are randomly
labeled ¢ and d. The three branches that make up the
backbone of the move are branches a, e, and ¢. The
sum of the tree branch lengths, or the path length, is
m=v,+v.,+v. A new path length is chosen as
m' =m x ¢"V"1? where U is a uniform (0,1) random
number and / is a tuning parameter that is fixed at
the beginning of the analysis. All of the branch
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lengths in the back bone are modified by multiplying
them by m’/m. Finally, either branch b or branch d is
chosen at random and detached from the backbone.
This branch is reattached to the backbone uniformly
over the new length of the backbone. The acceptance
probability for this move is

N 2
R = min | 1,(LikelihoodRatio) x (PriorRatio) x (ﬁ) ]
m
(Larget and Simon 1999).

Changing the k, ®,, w,, and w3

With probability ¥, Y3, Y4, and s a move is at-
tempted that changes k, @, @w,, or ws, respectively.
The current value of the parameter (generically, 0,)
was increased or decreased by adding a uniformly
distributed random variable on the interval [0~w;,
0;+w;], where i = 2, 3, or 4. The window is centered
on the current value of the parameter. When a new
value is proposed that is outside of the valid param-
eter space, then the excess is reflected back. The ac-
ceptance probability for this proposal mechanism is

R = min[1,(Likelihood Ratio) x (Prior Ratio)]

Changing the Codon Frequencies and Category
Probabilities

With probability s and 17 a move is attempted that
changes the equilibrium codon frequencies, 7, or
category probabilities, pq, p,, p3. New codon fre-
quences are proposed from a Dirichlet distribution
with expected values at the current values. The Di-
richlet distribution has probability density

'Tca _ F(O(()) 7'6(“'71)
Al HieSF((xi)g '

where S is the state space (444, AAC, AAG, AAT,
ACA, ACC, ACG, ..., TTT), o; is the Dirichlet pa-
rameter for the ith codon, ap=> s, and 7; is the
frequency of the ith codon. New codon frequencies,
7', are drawn from the Dirichlet distribution with
o; =m0g. The acceptance probability for a move that
changed codon frequencies is

R =min [1,(Likelihood Ratio) x (Prior Ratio)

(mhop—1)
T (mo) ™
] (mioto)

(o) (mito=1)

icS

The same mechanism was used to propose new values
for the category probabilities p;, p,, and ps.
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